
Physics H7C Fall 1999 Solutions to Problem Set 1 Derek Kimball

“Let’s get something straight here... e is real, 10 is just the number of fingers we
have.”

- Prof. Nima Arkani-Hamed, UC Berkeley

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

If you liked problem 1 and you’re interested in astrophysics, general relativity, and
cosmology, you should check out a paper by Saul Perlmutter, Michael S. Turner,
and Martin White (Physical Review Letters, July 26, 1999, Volume 83, Issue 4,
pp. 670-673). This article and references therein describe an ongoing study of
type Ia supernovae which have “standard candle” light output and have enabled
these scientists to measure large-scale cosmological parameters. One of the most
interesting results is that their data is consistent with a universe that is expanding
at an accelerating rate! Saul Perlmutter’s group is here at Berkeley and works at
LBL.

Problem 1

First, let’s consider the implications of the difference in light intensity of the two
supernovae (SN1 and SN2). These particular supernovae are known to have iden-
tical “standard candle” light output, i.e. the total light power P emitted is the
same for SN1 and SN2. A small solid angle dΩ of the total light is detected on
earth, so the intensity of light I detected is given by:

I =
dΩ · P
4πR2

, (1)

where R is the distance from a supernova to the earth at the time the light is
emitted. Therefore the ratio of light intensities tells us the ratio of distances:

I1

I2
=

R2
2

R2
1

= 4. (2)

(a)

An astronomer theorizes that SN1 causes SN2, and that they are both at rest with
respect to the earth. Since the two events SN1 = (ct1, x1) and SN2 = (ct2, x2)
are causally related, there must be a timelike or lightlike separation between the
events:

c2∆t2 − ∆x2 ≥ 0, (3)

where ∆t = t2 − t1 and ∆x = x2 − x1.

From Eq. (2), we see that if the distance between SN2 and SN1 is ∆x, the
distance between SN1 and earth is also ∆x. Then the elapsed time ∆tearth between
detection of the two supernovae on earth, taking into account the propagation time
of the light to the earth, is given by:

c∆tearth = c∆t + c

(
2∆x

c

)
− c

(
∆x

c

)
= c∆t + ∆x. (4)

From Eq. (3), we know that c∆t ≥ ∆x, so we find that:

∆x ≤ c∆tearth

2
, (5)

or that ∆xmax = 5 light years.

(b)

A physicist theorizes that the two supernovae were traveling away from the earth
at some velocity and occurred at the same proper time. In this case the two events
have a spacelike or lightlike separation:

c2∆t2 − ∆x2 ≤ 0. (6)

Thus, in the earth frame there is an observed time difference ∆tobs between SN1
and SN2, which from Eq. (6) must satisfy:

c∆tobs ≤ ∆xobs, (7)

where ∆xobs is the distance between SN1 and SN2 as observed in the earth frame.
As in part (a) we include the light propagation time, and find that:

c∆tearth = c∆tobs + ∆xobs ≤ 2∆xobs. (8)

So in this case we find that ∆xobs,min = 5 light years.

Problem 2

(a)

This is just the traditional Lorentz matrix, only in 3D, so it is similar to the
expression (1.12) in Prof. Strovink’s notes on relativity,


 ct′

x′

y′


 =


 γ −γβ 0

−γβ γ 0
0 0 1


 ·


 ct

x
y


 . (9)
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(b)

The general idea is to rotate to a system where we know the correct transform
(from part (a)), and then rotate back. So we begin with:

r′ = L · r. (10)

Then we rotate the coordinate system with a rotation matrix R so that �β is along
x̂:

Rr′ = RL · r = RLR−1(Rr). (11)

In this frame we know the Lorentz transform Λ from part (a), so we find that:

RLR−1 = Λ. (12)

In other words,

L = R−1ΛR. (13)

The math can be made a little easier in these cases because rotations are described
by orthogonal matrices which satisfy R−1 = RT where RT is the transpose of R.

Now for the actual math. From (a) and Eq. (13) we find:

L =


 1 0 0

0 cosθ −sinθ
0 sinθ cosθ


 ·


 γ −γβ 0

−γβ γ 0
0 0 1


 ·


 1 0 0

0 cosθ sinθ
0 −sinθ cosθ


 ,

(14)

where we use straightforward 3D extensions of the usual rotation matrices. Mul-
tiplying these matrices gives us:

L =


 γ −γβcosθ −γβsinθ

−γβcosθ γcos2θ + sin2θ −cosθsinθ + γcosθsinθ
−γβsinθ −cosθsinθ + γcosθsinθ cos2θ + γsin2θ


 . (15)

We are given that:

V = βc
x̂ + ŷ√

2
, (16)

so θ = π/4. Then L is given by:

L =




γ −γβ√
2

−γβ√
2−γβ√

2

1+γ
2

1
2 (γ − 1)

−γβ√
2

1
2 (γ − 1) 1+γ

2


 (17)

Figure 1: Relationship between n̂ and the angles θ and φ employed in problem (3)
in the first approach.

As you can see by inspection, this matrix is symmetric under interchange of x and
y and reduces to the identity matrix as β → 0.

Problem 3

Here are two common approaches to this problem. The first method involves
matrix multiplication in a manner similar to that employed in problem 2. The
second involves determining a general vector formula for the Lorentz transform.

Approach 1

First, we’ll determine the rotation matrix R which will take us into the frame
where �β is along x̂. For me, it’s easier to think of this in terms of the angles θ and
φ as defined in Fig. 1.

From Fig. 1, we notice that there is a natural correspondence between (nx, ny, nz)
and θ, φ given by 

 nx

ny

nz


 =


 cosφcosθ

cosφsinθ
sinφ


 . (18)

Later, these relations will be used to express L in terms of nx, ny and nz.

R is given by the multiplication of two rotation matrices A and B,

R = B ·A, (19)
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where A rotates the axes about ẑ by θ

A =




1 0 0 0
0 cosθ sinθ 0
0 −sinθ cosθ 0
0 0 0 1


 , (20)

and B rotates the axes about a new ŷ′ (the y-axis after rotation by A) by φ so
that x̂ is along n̂:

B =




1 0 0 0
0 cosφ 0 sinφ
0 0 1 0
0 −sinφ 0 cosφ


 . (21)

Applying Eq. (13), we can now solve for L:

L = A−1 ·B−1 · Λ ·B ·A = AT ·BT · Λ ·B ·A, (22)

where Λ is given by Eq. (1.12) in Prof. Strovink’s notes on relativity.

The result of this rather tedious matrix multiplication, after some simplification
using basic trigonometric identities, is given by L =



γ −βγcosθcosφ −βγsinθcosφ −βγsinφ
−βγcosθcosφ 1 + (γ − 1)cos2θcos2φ (γ − 1)sinθcosθcos2φ (γ − 1)cosθsinφcosφ
−βγsinθcosφ (γ − 1)sinθcosθcos2φ 1 + (γ − 1)sin2θcos2φ (γ − 1)sinθsinφcosφ
−βγsinφ (γ − 1)cosθsinφcosφ (γ − 1)sinθsinφcosφ 1 + (γ − 1)sin2φ


 .

(23)

If we then use the relations given in Eq. (18) to re-express Eq. (23) in terms of
nx, ny and nz we find that:

L =




γ −βγnx −βγny −βγnz

−βγnx 1 + (γ − 1)n2
x (γ − 1)nxny (γ − 1)nxnz

−βγny (γ − 1)nynx 1 + (γ − 1)n2
y (γ − 1)nynz

−βγnz (γ − 1)nznx (γ − 1)nzny 1 + (γ − 1)n2
z


 . (24)

Approach 2

In this approach, we work out a vector formula for the Lorentz transformation
using the fact that length contraction occurs only in the direction of �β. If, for

example, n̂ is along x̂, Λ from Eq. (1.12) in Strovink’s notes is applicable and we
find: 


ct′

x′

y′

z′


 =




γ(ct− βx)
x + (γ − 1)x− γβct

y
z


 . (25)

Let �r ≡ (x, y, z), then by analogy with Eq. (25) we find that:

ct′ = γ(ct− β�r · n̂) (26)

and

�r′ = �r + n̂((γ − 1)�r · n̂− γβct). (27)

We can then express these equations in terms of nx, ny and nz:



ct′

x′

y′

z′


 =




γct− γβ(nxx + nyy + nzz)
x + nx(γ − 1)(nxx + nyy + nzz) − γβct
y + ny(γ − 1)(nxx + nyy + nzz) − γβct
z + nz(γ − 1)(nxx + nyy + nzz) − γβct


 . (28)

These expressions can be re-written in matrix form, yielding L from Eq. (10) to
be:

L =




γ −βγnx −βγny −βγnz

−βγnx 1 + (γ − 1)n2
x (γ − 1)nxny (γ − 1)nxnz

−βγny (γ − 1)nynx 1 + (γ − 1)n2
y (γ − 1)nynz

−βγnz (γ − 1)nznx (γ − 1)nzny 1 + (γ − 1)n2
z


 , (29)

which you will notice is the same result as the one obtained in approach 1.

Problem 4

(a) The current I is the charge per second traveling through the channel, given

by:

I = nA(+e)(+βc) + nA(−e)(−βc) = 2nAeβc. (30)
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(b)

Ampere’s law (in SI units, feel free to use whatever units you like of course) is:
∮

�B · d�� = µ0Ienclosed. (31)

So in our case, assuming an infinitely long channel and using I from Eq. (30):

Bφ · 2πr = µ02nAeβc, (32)

therefore

Bφ =
µ0nAeβc

πr
. (33)

(c)

Let’s solve this both suggested ways... first using length contraction. The density
of positrons n+ is given by:

n+ =
N+

A · d , (34)

where d is a unit length of the channel in the lab frame S and N+ is the total
number of positrons contained in this volume. This new frame S′ is the rest frame
of the positrons, so d′ = γd (sort of length un-contraction). Therefore the observed
positron density in S′ is given by:

n′
+ =

N+

Aγd
=

n+

γ
. (35)

We can arrive at the same conclusion using the fact that
(
cρ,�j

)
is a four-vector.

Considering only the z-direction, we have the relation:(
cρ′

j′z

)
=

(
γ −γβ

−γβ γ

)
·
(

cρ
jz

)
, (36)

where the charge density in the lab frame S satisfies cρ = n+ec and the current
density in S is given by jz = n+eβc. Thus from Eq. (36) we find that:

cρ′ = n′
+ec = γ

(
n+ec− β2n+ec

)
. (37)

Consequently,

n′
+ =

n+

γ
(38)

as above.

(d)

Here we’ll just stick to the four-vector method. The relationship between the
charge density of electrons seen in S′ and S is given by:(

cρ′

j′z

)
=

(
γ −γβ

−γβ γ

)
·
(

cρ
jz

)
, (39)

from which we find the charge density:

cρ′ = γcρ− βγjz. (40)

The electron charge density in S satisfies cρ = n−(−e)c and the current density in
S is given by jz = n−(−e)(−β)c. Plugging these into Eq. (40) allows us to solve
for n′

−:

n′
− = γ

(
1 + β2

)
n−. (41)

(e)

First we solve the problem using Gauss’s law:∫
E′

r · dA =
∫

ρ

ε0
dV. (42)

Choosing a cylindrical Gaussian surface centered on the z-axis with radius r and
length d, we find:

E′
r · 2πrd = Ad

(
ρ′+ + ρ′−

)
/ε0. (43)

Using the relations for the charge density of positrons and electrons in S′ from
Eqs. (38) and (41), we find that:

ρ′+ + ρ′− =
ne

γ

(
1 − γ2(1 + β2)

)
= −2β2γne. (44)

Combining these results, we find for the radial electric field E′
r seen in S′:

E′
r = −r̂

β2γneA

πε0r
. (45)

We can also solve this problem using the relativistic field transformations for E
and B given in Prof. Strovink’s notes (Eq. (1.33)), in particular:

E′
⊥ = γ

(
E⊥ + c�β × �B

)
. (46)
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Employing Bφ from Eq. (33) and noting that Er = 0 in S, we find that:

E′
r = −cβγBφr̂ = −r̂

β2γneA

πε0r
. (47)

Where we use the fact that ε0µ0 = 1/c2. This, of course, agrees with our result
from Eq. (45) using Gauss’s law.

Problem 5

(a)

Note the interesting fact that the number of seconds in a year is approximately
π× 107, a useful fact at cocktail parties and for back-of-the-envelope calculations.

If you naively multiply the acceleration by the time, you find:

v = gt ≈ 10c. (48)

So, if you’re a believer in relativity, this can’t be right...

(b)

This part is basically worked out in the text of the problem, so there’s nothing to
say...

(c)

We start with

dx = c · sinh(η)dτ = c · sinh
(gτ

c

)
dτ, (49)

where we use the expression

cη = gτ. (50)

Next we integrate the small displacements from 0 → τf where τf is the final
“astronaut time.” ∫ xf

0

dx =
∫ τf

0

c · sinh
(gτ

c

)
dτ (51)

We can make a straightforward change of variable ξ = gτ/c:

xf =
c2

g

∫ gτf /c

0

sinh(ξ)dξ. (52)

Finally arriving at the solution:

xf =
c2

g
(cosh(gτf/c) − 1). (53)

(d)

If we plug in the numbers we find that xf ≈ 1020 meters or 104 light years. This
is just the first leg of the journey, so the furthest distance the astronaut can reach
is twice this, or 20,000 light years away! So the engineer was right...

Problem 6

(a)

The relativistic expression for energy E of particles with non-zero mass is given
by Eq. (1.23) in Strovink’s notes:

E = γmc2, (54)

where m is the rest mass of the particles. Since γ = cosh(η), the boost η is given
by:

η = cosh−1

(
E

mc2

)
(55)

Knowing from the problem that mc2 = 0.5× 106 eV and Efinal = 5× 1010 eV, we
can solve for η:

η = 12.2 (56)

(b)

We can use the result obtained in problem 5, namely Eq. (53), replacing g with
some constant acceleration a. We also replace cosh(gτf/c) with γf , which from
part (a) we find is γf ≈ 105. This gives us:

xf ≈ c2

a
γf (57)

Solving for a and making the appropriate substitutions yields:

a ≈ 3 × 1017g (58)
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(c)

We can use the relation between proper time dτ and time in the laboratory frame
dt from problem 5:

dt = cosh(η)dτ. (59)

If we apply the relation cη = aτ , then integrating this expression yields:

tlab =
c

a
sinh(ηf ) =

c

a
βfγf ≈ 10−5 s (60)

where tlab is the time interval in the lab frame.

From cη = aτ we can quickly calculate the proper time interval:

τ =
c

a
ηf ≈ 10−9 s (61)

So, taking the ratio gives an “average” γ factor of 104.

Problem 7

(a)

We know that photons satisfy E2−p2c2 = 0. Then, if we substitute the appropriate
values from the problem into the equation describing the Lorentz transformation
for the four-momentum (ignoring the z-direction), we find:


 E′/c

(E′/c)cosφ′

(E′/c)sinφ′


 =


 cosh(η) −sinh(η) 0

−sinh(η) cosh(η) 0
0 0 1


 ·


 E/c

(E/c)cosφ
(E/c)sinφ


 . (62)

Solving for E′ gives us:

E′ = E(cosh(η) − sinh(η)cosφ) = Ecosh(η)(1 − βcosφ). (63)

If we then find the equation for p′x we can solve for cosφ′:

cosφ′ =
E

E′ (cosh(η)cosφ− sinh(η)). (64)

Substituting in the expression for E′ from Eq. (63) yields:

cosφ′ =
cosφ− β

1 − βcosφ
. (65)

(b)

Now we use the inverse Lorentz transform:
 E/c

(E/c)cosφ
(E/c)sinφ


 =


 cosh(η) sinh(η) 0

sinh(η) cosh(η) 0
0 0 1


 ·


 E′/c

(E′/c)cosφ′

(E′/c)sinφ′


 . (66)

If we perform calculations similar to those in part (a), we find:

E = E′(cosh(η) + sinh(η)cosφ′) = E′cosh(η)(1 + βcosφ′). (67)

and

cosφ =
E′

E
(cosh(η)cosφ′ + sinh(η)) =

cosφ′ + β

1 + βcosφ′ . (68)

(c)

Here, we can employ the relationship between energy and frequency of a photon,
namely:

E = hν, (69)

where h is Planck’s constant. Thus from Eq. (63) we solve for ν′, finding the
relativistic Doppler shift formula:

ν′ = νcosh(η)(1 − βcosφ). (70)

If an observer knows only the frequency as observed in a given frame, one cannot
figure out what the frequency of light was in the rest frame of the source. Thus
a measurement of light frequency in a particular frame does not directly tell us
about the velocity of the source. However, if we have prior knowledge of what the
frequency of light at rest should be (for example, well-known atomic transitions in
hydrogen or helium), we can tell something about the motion of the source.

Problem 8

This situation is physically reasonable, here is one example of how it could hap-
pen...
Could the star be moving toward or away from us, even though the spectral features
are not redshifted or blueshifted? The answer is yes, as can be seen from the
relativistic Doppler shift given in Eq. (70). We demand that ν′ = ν, and then
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find a condition on the velocity of the source βc and the angle between �β and the
direction to earth φ:

cosφ =
γ − 1
βγ

. (71)

So long as this condition is satisfied, there is no restriction on the motion of the
source (save that the source, if massive, cannot move at the speed of light!).

Next we consider if some par-
ticular type of motion could
increase the apparent veloc-
ity of the star across the
sky. Once again the answer
is yes. Consider the situation
depicted in the figure to the
right. Of course, the draw-
ing is greatly exaggerated in
dimensions since z 
 D and
t2 − t1 is differentially small,
but hopefully it will give you
the basic idea. Suppose the
astronomer makes two mea-
surements with which she de-
termines the motion of the
star across the sky. The star
is moving toward the earth in this case, so it takes the light detected in the first
measurement longer to get to the earth. Suppose that the star gets closer to the
earth by z between the times it emits the detected light. Then the time between
the two light measurements on earth is:

t2 − t1 = ∆t− z/c. (72)

where ∆t is the time it takes the star to move to the new location in the earth
frame. Then the apparent angular motion is given by:

D
dθ

dt
=

D∆θ

∆t− z/c
. (73)

So in fact (which is clear if you try some reasonable numbers), this apparent
velocity can exceed the real velocity of the source by quite a bit, enough to make
the star look like it’s going c or faster. There are real cases of this in astronomy...
for example at the center of the galaxy there are stars whose apparent velocity
greatly exceeds c (of course they’re redshifted and blueshifted all over the place,
but you get the idea...)!
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